
Spin effects in the effective quantum field theory of general relativity

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

2007 J. Phys. A: Math. Theor. 40 6973

(http://iopscience.iop.org/1751-8121/40/25/S48)

Download details:

IP Address: 171.66.16.109

The article was downloaded on 03/06/2010 at 05:16

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/1751-8121/40/25
http://iopscience.iop.org/1751-8121
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


IOP PUBLISHING JOURNAL OF PHYSICS A: MATHEMATICAL AND THEORETICAL

J. Phys. A: Math. Theor. 40 (2007) 6973–6978 doi:10.1088/1751-8113/40/25/S48

Spin effects in the effective quantum field theory of
general relativity

Andreas Ross and Barry R Holstein

Department of Physics, University of Massachusetts, Amherst, MA 01003, USA

E-mail: andreasr@physics.umass.edu and holstein@physics.umass.edu

Received 31 October 2006, in final form 23 January 2007
Published 6 June 2007
Online at stacks.iop.org/JPhysA/40/6973

Abstract
The calculation of gravitational scattering of particles with various spin
configurations in the framework of effective quantum field theory of general
relativity is presented. We find that the long-range quantum and classical
corrections to the spin-independent piece and the spin–orbit coupling piece of
the scattering amplitude and the scattering potential are universal for different
spin configurations, which leads us to propose this universality to be true for
arbitrary spins. Furthermore, we give the leading corrections to the spin–spin
coupling, and a comparison with scattering in QED is made.

PACS numbers: 03.70.+k, 04.20.−q, 12.20.−m

1. Introduction

It has long been known that general relativity is a non-renormalizable quantum field theory.
However if treated as an effective theory, renormalization can be performed order by order
and reliable predictions can be made at low energies, i.e., at energies much smaller than the
Planck scale [1, 2]. What the effective field theory treatment accomplishes is to separate
known physics associated with laboratory energy scales from unknown physics at very high
energies—predictions at low energies are possible without knowledge of unknown high energy
physics, which in our case would represent the UV completion of quantum gravity.

The effective action is constructed using the known symmetries and low energy degrees
of freedom

S =
∫

d4x
√−g(Lgrav + Lmatter), (1)

where the purely gravitational part is

Lgrav = � +
2

κ2
R + c1R

2 + c2RµνR
µν + · · · (2)

with κ2 = 32πG ∝ 1/M2
P l , and the matter part is illustrated by a scalar field

Lmatter = 1
2gµν∂µφ∂νφ − 1

2m2φ2 + κ2 (d1R
µν + d2Rgµν) ∂µφ∂νφ + κ2d3Rm2φ2 + · · · . (3)
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Since R and Rµν each contain two powers of derivatives, it is seen that the effective action
represents an expansion in p2

/
M2

P l , where p are graviton momenta, so that reliable predictions
are possible for energies much smaller than the Planck scale. Using the background field
method, expanding around flat space—gµν = ηµν + κhµν—and fixing the gauge using the
harmonic gauge fixing condition—∂µhµν = 1

2∂νh
λ
λ—we can quantize the theory and derive

Feynman rules. As we shall see, the leading corrections at long distances coming from non-
local/non-analytic effects yield unique predictions independent of the unknown couplings ci

and di of the local Lagrangian. For a more detailed introduction to the effective field theory
description of gravity see [3].

Within this framework we investigate the scattering of particles with various spins in
the non-relativistic limit, which allows us to extract the leading long distance corrections to
the scattering amplitude and to generate corrections to the Newtonian potential. For spinless
particles this calculation has been performed by Bjerrum-Bohr, Donoghue and Holstein [4],
and we summarize their work in the following section. In section 3 we extend the calculation
to particles with spin. We find that the spin-independent pieces of the amplitude/potential
are universal, i.e., they do not depend on the spins of the scattered particles, and we present
new components that describe spin–orbit coupling and spin–spin coupling. The form of the
spin–orbit pieces is also shown to be universal, and we expect such universalities to hold for
arbitrary spins. For spin-1/2–spin-1/2 scattering, we compare our results to those of a paper
by Kirilin [5] where the quantum pieces were calculated. In section 4 we draw a comparison
to scattering in QED where similar universalities are found to occur.

2. Gravitational scattering of spinless particles

The tree level (one graviton exchange) amplitude for gravitational scattering of two particle
with masses m1 and m2 can easily be calculated and reads

M = −4πGm1m2

q2
+ 4πG

NR−→ 4πGm1m2

�q2
+ 4πG (4)

in the non-relativistic limit—v � c—with q2 representing the invariant momentum transfer
squared. Note that only the first piece of equation (4) is non-analytic in q2 and the
amplitude has a single power of Newton’s constant G. If we Fourier transform to coordinate
space the Newtonian potential V (r) = −Gm1m2/r is obtained from the non-analytic
piece whereas the constant yields a delta function, which illustrates the fact that only pieces
of the amplitude that are non-analytic in q2 contribute to the long-range interaction.

The one-loop (two graviton exchange) calculation of the non-analytic component of the
scattering amplitude yields O(G2) corrections and is much more complicated. The Feynman
diagrams involved can be found in [4], and the result for the non-analytic parts of the non-
relativistic amplitude to 1-loop is

M = − 4πGm1m2

q2
+ 6G2m1m2(m1 + m2)

π2√
−q2

− 41

5
G2m1m2 log − q2. (5)

The piece of this amplitude involving (−q2)−1/2 is of classical origin, while the log −q2

part is a quantum correction associated with zitterbewegung, i.e., the quantum piece is O(h̄)

whereas the classical component is h̄ independent. To illustrate this feature, we display factors
of h̄ explicitly in the Fourier transform of the scattering amplitude, which gives the leading
corrections to the Newtonian potential

V (r) = −Gm1m2

r

(
1 + 3

G(m1 + m2)

r
+

41

10

Gh̄

r2
+ · · ·

)
. (6)
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The small expansion parameters of the corrections are GM/r ∝ (M/MPl)(lP l/r) for the
classical piece and Gh̄/r2 ∝ (lP l/r)2 for the quantum piece. Since for macroscopic stellar
objects such as stars M � MPl , the classical correction can become measurable even though
lP l/r � 1, but unfortunately, the quantum corrections are tiny and there appears to be no hope
to measure them.

An interesting feature is that the coefficient of the classical piece depends on the choice
of coordinates. Our classical piece is the result for harmonic coordinates and would be
different in a different gauge. The quantum piece however is gauge independent. This gauge
dependence does not alter physical results, e.g., the perihelion of Mercury, which we could
in principle compute. However, for such an endeavor, corrections proportional to v/c, which
we have neglected, need to be taken into account and the equations of motion for which the
potential is suitable would have to be identified. Clearly, the potential itself is not a physical
observable—the concept of a potential in quantum field theories is a subtle one [6].

3. Gravitational scattering of particles with spin

The simplest case of scattering involving spin is the scattering of a spin-0 particle (mass m1,
incoming momentum p1, outgoing momentum p′

1 = p1 − q) and a spin-1/2 particle (having
mass m2, incoming momentum p2, outgoing momentum p′

2). At tree level the non-relativistic
amplitude is

M = −4πGm1m2

q2
ū(p′

2)u(p2) − i
8πG

m2q2
εαβγ δq

αp
β

1 p
γ

2 Sδ
2, (7)

with the spin four-vector S
µ

2 = 1
2 ū(p′

2)γ5γ
µu(p2)

NR−→ (0, �S2) which reduces to the spin three-

vector �S2 = χ
†
f

�σ
2 χi in the non-relativistic limit. Our spinors are normalized as ū(p)u(p) = 1.

It should be noted that pieces involving the spin four-vector yield only spin-dependent terms,
while the ūu component contains both spin-dependent as well as spin-independent pieces

since ū(p′
2)u(p2)

NR−→ χ
†
f χi − i

2m2
2
εjklqjpk

2S
l
2.

Performing the non-relativistic reduction of equation (7) and Fourier transforming, we
find the potential in the centre-of-mass frame (�p1 = −�p2 ≡ �p, �r ≡ �r1 − �r2):

V (r) = −Gm1m2

r
χ

†
f χi +

2G
(
1 + 3m1

4m2

)�L · �S2

r3
, (8)

with �L = �r × �p. The first term is, of course, the spin-independent Newtonian potential while
the second one represents the leading-order spin–orbit coupling, whose structure leads to the
geodetic precession currently being measured by gravity probe B.

For spin-0–spin-1/2, scattering the calculation of the one-loop amplitude involves the
same diagrams as in the spinless case, and the resulting correction to the scattering amplitude
reads

M =
[

6G2m1m2(m1 + m2)
π2√
−q2

− 41

5
G2m1m2 log −q2

]
ū(p′

2)u(p2)

+

[
i

(
4

m1m2

(m1 + m2)2

m1m2

�p2
+ 10

)
G2

(
1 +

3m1

4m2

)
π2√
−q2

]
εαβγ δq

αp
β

1 p
γ

2 Sδ
2

− i
64G2

5m2
log −q2εαβγ δq

αp
β

1 p
γ

2 Sδ
2 . (9)
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The first feature we note is that the spin-independent corrections are identical to those found
in the spinless case. Moreover, the classical correction to the spin–orbit coupling seen in the
second line displays an intriguing behaviour, in that a part involves the factor m1m2/�p2, which
diverges in the threshold limit—s → s0 = (m1 + m2)

2 and �p2 → 0. This piece arises from
the reduction of the vector and tensor box integrals wherein the Gram determinant vanishes
at threshold in the limit �q2 � �p2. In order to see why this piece is troublesome we take the
Fourier transform of its non-relativistic reduction and generate its contribution to the potential

V SO
NLO = 4G2m2

1m
2
2

(
1 + 3m1

4m2

)�L · �S2

(m1 + m2)�p2r4
= − 2m1m2

(m1 + m2)�p2
V SI

LOV SO
LO

= −Gm1m2/r

�p2/(2µ)
V SO

LO , (10)

where V SI
LO and V SO

LO are the spin-independent and spin–orbit components of the leading-order
potential in equation (8). Since kinetic and potential energies are generally expected to be of
the same order for systems that obey the virial theorem, this piece appears to be of the same
order as the leading spin–orbit component! However, we have verified that equation (10) arises
from the second Born approximation of the leading-order potential. If the goal is to define
a potential to be used in a Schrödinger equation, then equation (10) must be subtracted from
the potential in order to avoid double counting. Nevertheless, such terms are present in the
scattering amplitude and they are h̄ independent, which raises the question whether such terms
could affect the modelling of gravitational wave signals from coalescing rotating black holes
where spin-dependent post-Newtonian pieces play a role. One might think of such a term as a
peculiarity of gravity, but the same behaviour is found for the spin-dependent classical pieces
in electromagnetic scattering.

The quantum pieces of spin–orbit corrections to the spin-0–spin-1/2 scattering amplitude
are well behaved and their contribution to the potential yields

V SO
NLO,quantum(r) = 96G2 �L · �S2

5πr5
+

m1

m2

261G2 �L · �S2

20πr5
. (11)

We have also calculated spin-0–spin-1 scattering, and the results have the same form and
coefficients as the spin-0–spin-1/2 case, confirming the universality of corrections to the spin-
independent and spin–orbit pieces. Furthermore, new quadrupole interaction terms appear
and part of their classical piece also exhibits the interesting threshold behaviour proportional
to 1/�p2. Detailed results will be given in [7].

The next case to consider is spin-1/2–spin-1/2 scattering where we find new spin–spin
coupling terms, and where we again wish to confirm universality. At tree level the amplitude
is

M = −4πGm1m2

q2
ū(p′

1)u(p1)ū(p′
2)u(p2) − i

8πG

m2q2
εαβγ δq

αp
β

1 p
γ

2 Sδ
2 ū(p′

1)u(p1)

− i
8πG

m1q2
εαβγ δq

αp
β

1 p
γ

2 Sδ
1 ū(p′

2)u(p2) − 4πG

q2
q · S1q · S,2 (12)
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and the leading-order potential becomes (obvious factors of χ
†
f χi have been suppressed)

V (r) = −Gm1m2

r
+

2G
(
1 + 3m2

4m1

)�L · �S1

r3
+

2G
(
1 + 3m1

4m2

)�L · �S2

r3

+
G

(�S1 · �S2 − 3�r · �S1�r · �S1/r2
)

r3
. (13)

Note that since two spins are involved, there exist two spin–orbit coupling pieces, one for each
particle, and a new spin–spin coupling piece arises.

The one-loop corrections to the non-relativistic scattering amplitude are rather lengthy
and, due to the lack of space, we do not write them down in full. However, we find again
that the spin-independent piece is identical to previous cases, while the spin–orbit terms
possess the same form with the same numerical coefficients as in the spin-0–spin-1/2 and the
spin-0–spin-1 calculations. The spin–spin piece is new

MSS = G2(m1 + m2)

(
m1m2

(m1 + m2)2

m1m2

�p2
+ 9

)
π2√
−q2

(q · S1q · S2 − q2S1 · S2)

+ G2 log −q2

(
−11

15
q · S1q · S2 +

16

15
q2S1 · S2

)
. (14)

We observe that the spin–spin coupling piece of the amplitude contains a classical component
proportional to 1/�p2 while the quantum spin–spin piece is well defined at threshold. The
calculation of gravitational scattering of two spin-1/2 particles has also been performed
recently by Kirilin [5] who only quotes the quantum component. For the spin–orbit quantum
pieces we agree with Kirilin’s results, but our spin–spin quantum terms differ by numerical
coefficients. Our quantum correction to the spin–spin interaction potential is

V SS
NLO,quantum(r) = G2(43�S1 · �S2 − 55�r · �S1�r · �S1/r2)

10πr5
. (15)

4. Aside on QED scattering

In a parallel calculation we have also investigated the leading long distance effects in
the electromagnetic scattering of two charged particles with different spin configurations,
extending work by Feinberg and Sucher [8, 9]. Our results will be published in detail soon [7].
The similarity of the gravitational scattering results and the QED results is striking. We find
universality in the QED case for spin-independent, spin–orbit, spin–spin and quadrupole pieces
of the amplitudes/potentials to 1-loop. Furthermore, both classical and quantum corrections
arise, and pieces proportional to 1/�p2 appear for all classical corrections except those which
are spin independent, while the quantum pieces are all well behaved at threshold.

5. Conclusions

We have calculated the leading long distance corrections to the non-relativistic gravitational
scattering amplitude for various spins of the scattered particles. The corrections involve
classical as well as quantum contributions. Most importantly, we have explicitly shown that
the corrections to the spin-independent and to the spin–orbit pieces are universal, i.e., the forms
and coefficients are independent of the specific spin of the scattered particles. We suspect this
universality to hold for arbitrary spin and also to hold for the spin–spin component.

Corrections to the Newtonian potential were obtained by Fourier transforming the
scattering amplitude, but there is no unique definition of a scattering potential in quantum
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field theory. We will elaborate on these issues in more detailed publications [7]. The issue
of the definition of a potential is also related to the classical spin-dependent corrections to
the scattering amplitude which show an interesting threshold behaviour proportional to 1/�p2

and which, when subtracted, allow the construction of a second-order potential that can be
used in a Schrödinger equation. Nevertheless, these pieces are of classical origin and they do
occur in the scattering amplitude, leaving us to wonder if they can play any phenomenological
role in gravitational wave experiments where spin-dependent post-Newtonian corrections are
important.
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